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Abstract. A mdtiphonon mechanism of neutron scattering in glasses is considered. 
It is due to the interaction of the neutrons with strongly fluctuating double-well 
potentials characteristic of glasses which m a y  he of importance at not too low tem- 
per&- (above the liquid helium temperature). The cross section of this process is 
calculated and its dependence on the temperature and the neutmn energy transfer 
is found It is shown that, contrary to the relaxation mechanism, the mdtiphonon 
mechanism produces a cross section without a maximum in its temperature depen- 
dence. This, as well as some other features, corresponds better to the experimental 
observations. 

1. Introduction 

Neutron scattering is an important experimental technique to study vibrational spec- 
tra in various solid substances. It allows one, for example, to obtain detailed in- 
formation concerning the harmonic phonons and local modes in crystals (see, e.g., 
Maradudin 1966). Recently, attention has also been drawn to the possibility of study- 
ing the vibrational spectra of glasses by neutron scattering (Buchenau 1985, Sinclair 
1985, Price 1986). Buchenau et a1 (1984) investigated inelastic neutron scattering 
from vitreous silica in the low energy transfer range, up to a few meV. They have 
found that, apart from the harmonic phonon contribution, there is excess scatter- 
ing which is characterized by a structure factor which is independent of the neutron 
transfer energy. The temperature dependence of the cross section cannot be accounted 
for by the standard Bose factor (Buchenau el al 1988) which means that this excess 
scattering can hardly be attributed to the harmonic part of the vibrational spectrum. 
They have also found that the cross section decreases with an increase in the transfer 
energy. 

It is well known now that the spectrum of the glass also contains, apart from 
the usual harmonic, an anharmonic part. The latter may be represented either by 
double-well potentials (DWP) or other local anharmonic modes (see, e.g., Phillips 
1987, Goldanskii el al  1989, Galperin e l  al 1989). We are going to distinguish here, 
among the various anharmonic modes, the so called rigid DWPS considered in the 
paper of Fleurov and Trakhtenberg (1986 and references therein) and to calculate 
their contribution to neutron scattering in the glass. 

An important feature of rigid DWPs is that the interaction with them at not too 
low temperatures (above the liquid helium temperature) has a multiphonon character. 
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It is due to the strong fluctuations in the barrier in the DWP which modulate the tun- 
nelling amplitude. We are going to demonstrate here that this mechanism plays an 
important part in this excess neutron scattering and is capable of explaining its prin- 
cipal features. There are two other mechanisms for scattering in glasses-resonance 
and relaxation-that have been considered by Maleyev (1986) at low temperatures. 
At  higher temperatures, which are of interest to us here, only the relaxation mecha- 
nism may be of importance (Buchenau et a1 1984, 1988) and can compete with the 
multiphonon mechanism. The most essential difference in the experimental observa- 
tion of the two mechanisms is the temperature dependences of the corresponding cross 
sections. The relaxation cross section is characterized by a maximum which is absent 
in the multiphonon cross section. This property would help the experimentalist to 
judge which mechanism is predominant in a particular experiment. 
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2. Rigid double-well potentials 

A brief description of the model for rigid DWPS is given in this section. The aim is to 
remind us of the principal ideas and to introduce the notation which will be used in the 
present as well as in the following paper (Fleurov and Levanda 1992). A more detailed 
account of the model and the calculations can be found in Fleurov and Trakhlenberg 
(1986), Goldanskii et a l  (1989) and Fleurov (1989). 

It is assumed that the principal contribution to various kinetic processes in glasses 
in the intermediate region of the temperatures is due to the rigid DWPs which contrary 
to soft DWPs (reviewed by Galperin et a1 1989) are characterized by the barrier height 
and width of the atomic order. (Say, the example considered in Fleurov and Trakht 
enberg (1986) deals with the harrier height, 0.5 eV, and width, 0.5 A.) The soft DWPS 
are responsible for various effects (specific heat, ultrasonic attenuation etc) observed 
in glasses at low temperatures. However, at higher temperatures (above, say, 10 K)  
they become ineffective and we have to consider the role of rigid DWPs. 

The principal mechanism of the interaction of the phonons with a rigid DWP is due 
to strong fluctuations (first considered by Kagan and Klinger (1976)) in the barrier 
shape. The Hamiltonian of the glass is 

fi = + V ( { & } )  (2.1) 
i 

Here $ is the kinetic energy of the ith atom in the glass; V ( { & } )  is the potential en- 
ergy of the ensemble of the atoms with the coordinates {Ri}. Now we have to consider 
the structure of the wavefunctions of the atomic motion in the glass. The analysis 
based on the catastrophe theory approach (Karpov et a1 1982, Fleurov 1990, see also 
the review of Galperin el al 1989) allows one to make a diffeomorphic transformation 

{ R i a )  - I 4 ,  { P j )  (2.2) 

that separates (at least partially) the coordinates, { p j } ,  describing the harmonic 
(phonons) degrees of freedom and the coordinates, {z~}, for the anharmonic mo- 
tions. Some of these anharmonic degrees of freedom correspond to the DWPs and, in 
particular, to the rigid DWPs which are of a special interest for us in what follows. 

In order to proceed further one has to make a double adiabatic approximation 
whose applicability to rigid DWPs has been discussed in detail in Fleurov and Trakht 
enberg (1986) and Goldanskii e l  a1 (1989). The first stage of this approximation is the 
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standard Born-Oppenheimer procedure allowing one to separate the electronic {re} 
and atomic degrees { z l } ,  { p j }  of freedom. The second stage uses the transformation 
(2.2) and separates the anharmonic { c l }  and harmonic { p j }  degrees of freedom. The 
interaction with the electronic degrees of freedom takes no part in the neutron scatter- 
ing, therefore the electron coordinates can be integrated out (they are not even shown 
in the Hamiltonian (2.1)). Now the wavefunction of the system is represented in the 
form 

* u , n ( { ~ l l >  { P j l )  = $ J { Z l h  {Pj})*"JtPJ) (2.3) 

where the wavefunction $u( {z , } ;  {pj}) describes particles moving in the DWPS a t  fixed 
phonon coordinates { p i } .  q , , J { p j } )  is the phonon wavefunction. 

We are going to consider here only independent DWPs which are separated spatially 
and do not interact directly with each other. Therefore the DWP wavefunction is 
factorized as 

where $ e , ( z l ; { p j ) )  is the wavefunction of the lth DWP and we shall neglect any 
overlap of the wavefunctions $wt(q; { p i ) )  for different D\YPs. As  aresult the transition 
amplitude 

(${e~)({zi};{pj))IV({R~})I~{D~}({z,I;{pj})){=~l = z ~ i , e ~ p , ( t ~ j I )  n J e , , p , ,  (2.4) 
l l'#l 

is now the sum of the transition amplitudes for the individual DWPs. Subscript { z l }  
denotes the integration over the DWP coordinates. 

The rate constant for the multiphonon transitions with the energy change A E  in a 
single DWP is proportional to  the quantity (the number, 1, of the DWP is suppressed) 

(2.5) 

Here the initial energy E, = Eu+Eph,i contains both the initial energy of the DWP and 
that of the phonon subsystem, E,,@ = Ee-ED. @' = l/k,T is the inverse temperature. 
It is convenient to  use here the so called non-diagonal or localized representation for the 
DWP wavefunctions (see, e.g., Phillips 1987). They describe the 'particles' localized in 
one of the two wells of the DWP. They can always be chosen to be orthogonal although 
they are not eigenfunctions of the DWP Hamiltonian. However they have an important 
property that they weakly overlap exponentially in the region of the potential barrier. 
That is why the non-diagonal elements of the matrix A W p ( { p j } )  has the form 

A ( b j  1) = nu exP I- $4 IPj 1)) (2.6) 

typical for the tunnelling transition amplitude where U is a characteristic frequency. 
Since the quantity J ( { p j } )  characterizing the transparency of the barrier is large 
for the rigid DWPs even its small fluctuations can cause strong fluctuations of the 
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tunnelling amplitude. A linear approximation with respect to the phonon coordinates 
(single-phonon approximation) would not work here and we have to make use of the 
multiphonon approach. The ansatz 
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for the transparency pazameter is assumed. Here qj = pj - p?' is the deviation of the 
(0) phonon coordinate pj from its equilibrium value p j  . 

The calculation described in Fleurov and Tkakhtenberg (1986, see also Goldanskii 
el al 1989) results in 

W A E )  = [Wr)lexp[j$AE(T)/21 (2.8) 

1/Q) = ( v Z / n ~ ) e x P ( - J 0  + (D1) (2.9) 

where 

and 

ipl(T) = (R/4)[tanh(phSl/4) + R1/2]-' 

p2(T)  = [sinh(phQ/4)/ cosh3(pbR/4)]/2[tanh(phS1/4) + Rl/2] 

ps(T) = [1+ (R,/2) coth(phQ/4)1[1+ (Rl/2)tanh(8W4)1. 

The equations (2.8) and (2.9) are obtained under the assumption of the Einstein 
model for the oscillations of the DWP. I t  means that the sum over j in equation (2.7) 
contain only one term. It corresponds to  an Einstein mode coupled with the DWP 
and characterized by the frequency Sl and reduced maas M .  The equations (2.9) also 
contain two dimensionless parameters characterizing the coupling of the Enstein mode 
with the DWP. They are connected with the coefficients in the equation (2.7): 

R = hJr2/2MQ R, = hJ"/2MR. 

Two DWP wavefunctions in the localized representation are not the eigenfunctions 
of the DWP. However, the latter can be obtained from the coople of localized functions 
with the help of the canonical transformation 

where 

(2.10) 

ca is the asymmetry parameter of the DWP, i.e. the difference between two energies in 
the DWP in the localized representation. The coherent tunnelling amplitude A,(?') is 
determined by the equation 
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where pph({qj}) is the density matrix of the phonon subsystem. In the Einstein 
approximation the equation (2.11) reads 

A,(T) = tLv* exp[-$J'(T)] (2.12) 

where 

U* = v[l + (R , /2 )  ~oth(PtiQ/2)]- ' /~ 

and 

J'(T) = Jo - R/2[R, + 2 tanh(phQ/2)]. 

At IOW temperature the function J'(T) is a constant which determines the tun- 
nelling amplitude renormalized due to  the zero-point oscillations of the barrier. In the 
high temperature limit it tends to a quantity of the order of one and the next term 
in expansion over 1/T results in an activation-like beha\iour with the effective activa- 
tion energy Eef = RK2/2R:. I t  means in particular that the Arrhenius temperature 
dependence of the relaxation time T does not necessarily imply activation transitions. 
They can also be tunnelling in nature as well. 

3. Neutron-DWP interaction 

Now we start calculating the neutron scattering from the rigid DWPs using the results 
presented in section 2. The atoms of a glass sample interacting with neutrons are 
described by the Hamiltonian 

It  is the same Hamiltonian (2.1) in which a neutron part is added. HD is the Hamil- 
tonian of the free neutrons. The interaction of a neutron with the individual atoms is 
described by the Fermi pseudopotential 

W(T - Ri) = -2xtL2(fi/m)6(r - R;) (3.2) 

where fi is the Fermi scattering length of the ith atom, m is the neutron mass, and 
r is the neutron coordinate. Using the standard procedure the expression for the 
double-differential cross section for the neutron scattering in the Born approximation 
takes the form 

As usual expression (3.3) implies the summation over the final states ( f in)  of the 
glass and the statistical averaging over the equilibrium ensemble of its initial states 
(in). pi and p ,  are the momenta of the incident (initial) and scattered (final) neutron, 
respectively. 

6E = p12/2m - pi2/2m 
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is the change of the neutron energy due to its scattering, AEg is the corresponding 
change of the glass energy including possible changes in the phonon and the DWP 
subsystems. FIK = p, -pi is the neutron momentum transfer. Equation (3.3) is the 
standard expression used to calculate the double-differential CMSS section in solids 
regardless of whether they are crystals or glasses. In particular, if one assumes that 
the bra and ket vectors in the equation (3.3) correspond to an ensemble of harmonic 
oscillations the standard expression for the neutron scattering by phonons arises (see, 
e.g., Maradudin 1966). 

The initial and the final states of the glassy system will be described using the 
wavefunctions (2.3) in which the phonon and the DWP coordinates are separated. 
Assuming also that the different DWPS are spatially separated and do not interact 
with each other allows one to represent the DWP part of the wavefunction (2.3) as 
a product of the wavefunctions of the individual DWPS and the amplitude of the 
transitions between the DWP states for a fixed set, { p j } ,  of the harmonic variables as 
the sum (e.g. (2.4)) 
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(3.4) 

of the individual probability amplitudes l$Na,p2({p,}) for the transitions between the 
states nf and p, of the Ith DWP. Superscript N refers to neutrons. 

4. Amplitude of the multiphonon neutron-DWP scattering 

Now one has to consider the { p j }  dependence of the amplitude F;~o,pI({pj)). It arises, 
on one hand, from the { p j }  dependence of the atomic coordinates R, in the exponen- 
tial function in equation (3.4) since two sets of the coordinates are connected by the 
transformation (2.2). On the other hand, it is caused by the { p j }  dependence of the 
DWP wavefunctions. We start here with the localized representation (see section 2) 
which is more convenient due to the exponentially small overlap of the wavefunc- 
tions belonging to different wells of the same DWP. However equation (3.3) demands 
eigenfunctions of the system. This will be achieved by the canonical transformation 

Relatively small momentum changes are considered here, i.e. K O ~ ~ ~  < 1 where 
aDWp is the characteristic scale of the DWP. This scale is believed to be close to the 
interatomic distance. It means that the function eirRs is a slowly varying function of 
the coordinate x compared with the wavefunctions $ m ( 2 ; { p j ] ) .  The amplitude (3.4) 
for each DWP can be represented in the form 

(2.10). 

The parameters F in the right-hand side of the equation (4.1) can be easily esti- 
mated. All three parameters can be expressed using the quantity 
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Here Rp are the equilibrium positions of the atoms associated with a given DWP. The 
dependence of F, and Fd on the variation of the coordinates { p j )  can be neglected 
which means that Fu,Fd = Fo. As for the third parameter it contains a strong 
exponential dependence on { p j }  similarly to, e.g., (2.6), 

F,({Pjl) = F0 exP{-iJ({Pjl)l. (4.3) 

It is the only term in equation (4.1) contributing to the multiphonon processes. The 
situation is similar to that of the phonon-DWP interaction discussed in Fleurov and 
Trakhtenberg (1986); two types of interactions (diagonal and non-diagonal) between 
phonons and DWPS playing a similar role were considered there. 

The matrix T (see equation (2.10)) transforms the matrix (4.1) written in the local 
representation to a new matrix in the diagonal representation: 

F = T-m = ~,a,, t D ~ ~ : ~  t D ~ ~ : ~  (4.4) 

where 

Dd = ([ca/AE(T)lFd + [A1(T)/AE(T)lFn) (4.5Q) 

D" = (-[Al(T)/AE(T)lFd + [ce/AE(T)lFn), (4.5b) 

cs and U& are the Pauli matrices. 
The term in equation (4.4) which is proportional to the unit matrix 6aa describes 

a motion of the DWP as a whole without changing its internal degrees of freedom. 
This term has nothing specific of the neutron-DWP scattering and can be attributed 
to the neutron-phonon scattering which is of no interest to us here. The second 
term proportional to U& gives rise to the relaxation interaction. Only the terms in 
equations (4.5~) and (4.5b) proportional to F. give rise to the multiphonon interac- 
tion between neutrons and DWPs. Therefore the amplitude (4.1) of the multiphonon 
neutron-DWP scattering after the transformation (2.10) takes the form 

F:p({Pj 1) = F,([Ai(T)/AE(T)l~~p + k $ ~ E ( ~ ) l ~ p )  (4.6) 

which will be used in the calculations to be presented iii the following section. 

5. Cross section of the neutron-DWP scattering 

The cross section of the multiphonon scattering of neutrons by a DWP is calculated 
using equation (3.3) with scattering amplitude (4.6): 

= {z(A,(T)/AE(T))'6(aE,, - & E )  + (€,/AE(T))'[f(pAE(T))6(aE(T) 

t AE,, - 6E) + f(-pAE(T))6(-AE(T) t AE,, -&E)]}  (5 .1)  

where f (pAE)  = [l + exp(PAE)]-' gives the probability of the occupation of the 
upper DWP state, f ( -pAE) is that for the lower state. AEph is the change in the 
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energy of the phonon subsystem. In order to get the cross section for an ensemble 
of the DWPs expression (5.1) should be averaged with the proper distributions of the 
DWP parameters. 

The averaging over the initial and summation over the final states of the DWP is 
carried out explicitly in equation (5.1). Its first term stems from the diagonal part 
of the amplitude (4.6) (proportional to +) and describes the elementary processes of 
neutron scattering in which the DWP state does not change. The remaining part is 
due to the non-diagonal part of the amplitude (4.6) (proportional to U=) and describes 
the processes in which the state of the ith DWP changes. 

The calculation of the cross section (5.1) of the neutron DWP scattering is similar 
to the calculation of the rate constant K(AE)  (see section 2) presented in Fleurov and 
Dakhtenberg (1986). Accounting for equation (4.3) the vector Fn({pj)) is written as 
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(5.2) 

Relation (5.2) allows one easily to express the cross section (5.1) for the neutron- 
DWP scattering using the known equation for the rate constant IC(lAE) described in 
section 2. The result is 

x [(A1(T)/AE(T))' + (c./AE(T))* cosh-' iaAE(T)] .  (5.3) 

Each individual DWP is characterized by the vector Fo. Here we have neglected a 
possible distribution of the lengths of this vector and carried out the averaging over its 
orientations. The summation over DWPs in the equation (5.3) implies averaging over 
various values of the tunnelling parameter Jo and over the asymmetry parameter ca .  
Due to the lack of any detailed information concerning these distributions this aver- 
aging presents certain difficulties. However we shall make here the same assumptions 
as those discussed in detail in Fleurov and Trakhtenberg (1986) where the main point 
was a narrow distribution of the parameter Jo and a broad distribution of the param- 
eter ca. It would actually mean that the temperature dependence of the cross section 
is not essentially changed by the averaging procedure. Therefore we may concentrate 
in the discussion on the results concerning the behaviour of an individual DWP. 

6. Discussion 

The principal result of this paper is given by equation (5.3) for the multiphonon 
conlribution to the double-differential cross section of the neutron-DWP scattering 
in glasses. As mentioned in the introduction the role of a competitor can be played 
by the relaxation mechanism. This mechanism was discussed in Buchcnau (1985) 
and Buchenau et ~l (1988). (Maleyev (1986) considered this mechanism in the low- 
temperature region.) The following equation for the relaxation double-differential 
cross section was obtained: 
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where I(Ap) is a factor similar to that in equation (4.1) and connected with the 
geometry of the DWP. Comparing two cross sections (5.3) and (6.1) one can roughly 
estimate their ratio as 

[dZu,/dnd(6E)]/[d2u,/dnd(6E)] Y e-paE’z[l + ( r6E/h)2 ] / ( rv )2 .  (6.2) 
The answer to the question which mechanism, Ihe relaxation or the multi- 

phonon, is dominant depends on the value of two dimensionless quantities: p6E and 
r6E/h.  In the usual experimental situation l / r (T)  does not exceed a few GHz while 
l /ph = 20T GHz where T is the temperature measured in Kelvins. It means that 
the exponential function in equation (6.2) changes more slowly than Lhe Lorentzian 
function coming from the relaxation cros section. Therefore there is a range of the 
transfer energies, 6E, and temperatures where we are beyond the maximum of the 
Lorentzian (r6E > 1) whereas the exponential factor has not yet decayed (06E < 1). 
In this range the multiphonon mechanism is predominant. This situation is similar to 
that discussed in Fleurov and Trakhtenberg (1986) for the DWP-phonon scattering. 

The construction of equation (5.3) is simple so that various dependencies do not 
interfere. For example, the dependence of the cross section on the change, K of the 
neutron wavevector, i.e. the form factor, is not practically influenced by the temper- 
ature and the transfer energy changes. This t.ype of behaviour was emphasized by 
Buchenau et a1 (1984). 

Figure 1. The teniperature dependence of the m s s  
section for the dtiphonanneutron-DWP scattering for 
the neutron transfer energy. 220 GHz. The circles show 

0 100 200 3w the experimental data of Buchenau e t  nl (1988). The 
theoretical results are shown by the IuU curve. TEMPERITURE 1x1 

As for the temperature dependence of the multiptonon cross section it differs 
essentially from that of the relaxation one. Really the relaxation cross section has a 
maximum as a function of the temperature in the region determined by the equation 
r(T)6E/k = 1 while for the multiphon cross section this condition is of no importance. 
Its temperature dependence is determined mainly by the temperature dependence of 
the factor l/.r(T) in the equation (5.3) which is monotonic. Equation (2.9) gives us a 
simple expression for the relaxation time l /r (T)  in the multiphonon regime which can 
be used in order to compare the theoretical results with the experimental ones (see 
figure 1). The parameters R = 500, RI = 4.5 are chosen to fit the data of Buchenau e t  
d(l988).  The frequency R / 2 7 ~  of the local mode coupled with the DWP is chosen to be 
0.64 THz. These values are close to the parameters used in Fleurov and nakhtenberg 
(1986) for DWP-phonon scattering. The most important point here is that now we 
have no problems with the maximum which is inevitable in the relaxation mechanism 
but is absent both in the experiment and in the theory proposed in this paper on the 
basis of the multiphonon mechanism. This fact together with the other features of the 
multiphonon cross section mentioned earlier allows us to hope that this mechanism 
plays an essential role under the conditions of the current experiments. 
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